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INTRA-RELATION
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SemiSupervised Learning

SSLexploits the knowledge of theinput structure from unlabeled data and
at the same time utilizes thdabel information provided by labeled data .
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SemiSupervised Learningata Manifold

Data Manifold
O .
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What is thelabel ?
Knowing the geometry affects the answer.

Geometry changes tha&otion of similarity

Assumption: Data is distributed on somdow dimensional manifold.
Unlabeled data is used toestimate the geometry .
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SemiSupervised Learningnoothness

Smoothness Assumption

Desired functions are smooth with respect to theunderlying geometry
. Functionsof interest donot vary much inhigh density regionsor clusters.

Ve pd ~ Ve ~ -—

: Conditional distributions P(y|x) should besmooth with respect to the
marginal P(x).

[Example] In a two class problemP(y=1|x) and P(y=-1|x) do not vary
muchin clusters.
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SemiSupervised Learningnoothness

Smoothness Assumption on Data Manifold (Belkin & Niyogi 2004)

Letf : M — R Penaltw € M :
L[ (f(2) = flz+0)p(x)dd ~ ||Vf|Pp(x)

Total penalty:

I IV fIPp(x) da

p(x) is unknown , so the above quantity i€stimated
by the help ofunlabeled data :

Zi,j (f(xi) — f(xj))zwz

(Krishnapuram )
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SemiSupervised Learning:oblem Setting

Manifold Regularization (Belkin et al 2004)

Smoothness term:
Unlabeleddata
Data dependent regularization

f

opt _ - 2 2,
f OPl=argmin _ . H /HHfHH + /IHfHI + a C(yi,fi)

V...

Function complexity: Loss to
Prior belief Labeled data

H is the RKHS(Reproducing Kernel Hilbert Space) associatedith kernel k (., .)
||fl|  is the RKHSnorm of f.
Combinatorial laplacian can be used fosmoothness term :

IfIlF =7 (D= W) f =3 (Fla) = )W

1, orl, are the tradeoff parameters, andC (y, f)is anyloss function.
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SemiSupervised Learning:oblem Setting

General SSL ObjectiveFunction (Belkin et al 2004)

Smoothness term:
Unlabeleddata
Data dependent regularization

‘. |
min 1||w||2 R AN T a (f.-y)2
2 2 2 i=1 | [
Function corr;plexity: Loss to
Prior belief Labeled data

f(x)=<w, x> where xTY [xT1], wTN wT ]
L is combinatorial laplacian: L = DW
1 andc are the trade-off parameters
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Family of SSL Algorithmsraphbased Methods

There has been a whole spectrum of interesting ideas on how to learn from
both labeled and unlabeled data.

Graph-based SemiSupervised Learning Methods

- Most recent work in semisupervised learning

- The algorithms start with agraph where the nodesare the labeled and unlabeled
data points and (weighted)edgesreflect the similarity of nodes.

- Assumption: Nodes connected by large -weight edge tend to have thesame
label ,and labels can propagation throughout the graph

- The algorithms enjoys nice properties fronspectral graph theory
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Family of SSL Algorithmsraphbased Methods

Graph based algorithms for semi-supervised learning:
Graph mincuts (Blum and Chawla 2001)
Harmonic approach (zhu et al. 2003)
Consistency approach (Zhou and Bousquet 2003)
Many others

Basics:
Build the weighted graph
Solve anoptimization problem
: Use objective function based on cluster assumption
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Family of SSL Algorithmsraphbased Methods

Objective function:

BCEIDTR  SO-E 00

Label decision value: f :\V - {O,J}

Objective function:

EITIT =)~ 000 (0

Label decision value: f :\/ - [0,1]

~Obijective function: )
1{ <« 1 1 - )
) Q( ) 2(,-.,-21HU \/D_uFl \/D—UFJ $#;HFQ YQH )
Consistency Approach [ F* = arg min O(F)

FeF
\ Label decision value: F :V - [0,]
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Family of SSL Algorithmsraphbased Methods

Graph Mincut

Graphmincut and harmonic approach
preserve labels of the labeled data
O, AAA1T O AOA DPOAOAOOA/

Harmonic Approach

: Consistency applies a penalty term for
Consistency Approach jabeled data

O, AAA1 O | Au AEAT CAo
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Graphbased SSIWRAPUP

min mf ULt +(f - Y)T(f - Y)
f

f={1+mL} 1y

Obijective Function

Solution

where L =D-W, D= dlag(dl), dl =a V\fIJ
J

Korea-Japan ML Workshop/ 24 June 2016 Hyunjung (He 141



Graph Representatiobeating Graphs

Vector -type Data Conversion

A | A2|é | Awo |y

X1]110| 5 [é | 1000 | 1

X2| 6 6 [é | 3500 | -1

Xs| 7 7 |é 400 1

e |é [é6 6| & |é

X7| 3 188]|é 700 -1

Edges are built based on distance (similarity)
between two data points
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Graph Representatiofxeating Graphs

Fully Connected Graphs

Vector -type Data {

Sparse Graphs

KNN Graphs

RNN Graphs

tanh -weighted Graphs

exp-weighted Graphs

Graph-type Data Naturally Given Graphs

Tree Type Data

Sequential Data Time Series
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Graph Representationzating Graphs P2 ©"#"

K-NN Graph

k-nearest -neighbors of x, (k=3)

Nodesi, j are connected by an edge
if i is in E &-Oearest-neighborhood

The hyperparameter, k, controls the
density of the graph .

X4
Adaptive scales: The neighborhood
radius is different in low and high data
density regions.

@
@ ®
@,
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Graph Representationzating Graphs P2 ©"#"

R-NN Graph

R-nearest -neighbors of x, (R= 3)

Nodesi, j are connected by an edge
if the distance d{, j) SR X1

The hyper-parameter, R, controls X5 \

neighborhood radius . @
R . graph isdiscrete w.r.t the hyper- =,‘ X4
parameter S
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: S Graph:
Graph Representatiohxeating Graphs PAIsE =rEp

tanh -weighted Graph exp-weighted Graph
_tanh@,(d(i, j)- &,))+1 w =exds 4018
i 2 1) C a. =
The hyperbolic tangent function is a Continuousweighting scheme
OO0l £#6 OOADPG6 ~AEOIRANEI T OEAO OEI Ol AGAO
in that when d(, j) >>1,,w; BO; Theh - - X7 T AANT 1
: yperparameteth | h Al I OOl |
d(i, p<< 1,wy B . p
rate.
The hyperparameters
d, , cpntrols the slope value The cutoff is not asclear as the hyperbolic
do 2 CpntI’OIS the cutoff value tangent function.

Thetanh-weighted graph is continuous
w.r.t . hyperparameters. (amenable to _ _
learning with gradient methods ) feature dimension.

One can havene hyperparameter per
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: S Graph:
Graph Representatiohxeating Graphs parse =P

One can create sparse graphs, wheeach node connects to only a few nodes.

With sparse graphsthe edges can beinweighted or weighted .

[Advantage]

Computationally fast

Good empirical performance thanks taemoval of spurious connections
between dissimilar nodes

[Disadvantage]

Weight learning

A change in weighthyperparameterswill likely change the neighborhood,
making optimization awkward
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Vector-Type Data

CASE {

Cancer Clinical Outcome Prediction
Breast Cancer Survivabllity

J. Kim and H. Shin (2013),

Breast Cancer Survivability Prediction using Labeled, Unlabeled, and Psetidabeled Patient
Data,Journal of the American Medical Informatics Association (JAMIA) , 20(4):613-618

K. Park, A. Ali, D. Kim, Y. An, M. Kim, and H. Shin (2013),
Robust Predictive Model for Evaluating Breast Cancer Survivability,
Engineering Applications of Artificial Intelligence ,26(9):2194-2205

H.Shinand Y. Nam (2014),

A Coupling Approach of a Predictor and a Descriptor for Breast Cancer Prognosis,
BMC Medical Genomicsyol.7(1): S4, http:// www.biomedcentral.com/1755-8794/7/S1/S4
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Background

Prediction of Breast Cancer Survivability

A O3 OO Oig ddfinédéas patient remaining alive for a specified
period of time after the diagnosis of cancer

A Cancer Prognosis helps in establishing a treatment plarby
predicting the outcome of a disease
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Data

Surveillance, Epidemiology, End Results (SEER) cancer incident data

162,500 Breast cancer patient records
16 attributes
1 class label (Survivabillity)

. +1 (not survive)
.- 1 (survived)
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Data

Surveillance, Epidemiology, and End Result data (SEER, 1973-2003)
A Number of data points: 162,500
A Number of attributes: 17 (16 input variables / 1 target class variable)

Prognostic elements of breast cancer survivability (SEER )

Prognostic elements Description
1 Survivability Target binary variable defines class of survival of patient.
2 Age at Diagnosis Actual age of patient in years
3 Tumor Size 275 cm; at 5 cm, the prognosis worsens

4 Number of Po§|t|ve When lymph nodes are involved in cancer, they are known as positive.
Nodes Examined
Number of Nodes

Examined

Total nodes (positive/negative) examined

6 Number of Primaries Number of primary tumors (1z6)
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Data

Prognostic elements of breast cancer survivability (SEER )

Prognostic elements Description

1 Race Ethnicity: White, Black, Chinese, etc.

2 Radiation None, Beam Radiation, Radioisotopes, Refused, Recommended, gtc.
. . Presence of tumor at particular location in body.

3 Primary Site : e

Topographicalclassification of cancer.

4 Histological Type Form and structure of tumor

5 Behavior Code Normal or aggressive tumor behavior is defined using codes.

6 Grade Appearance of tumor and its s:rr:]cljlrzrlty to more or less aggressive t

: . Information on surgery during first course of therapy,whether

! Site Specific Surgery Cancer directedor not.

8 Stage Defined by size of cancer tumor and its spread

9 | Clinical Extension of tumor Defines the spread of the tumor relative to the breast

10 | Lymph Node Involvement None, (1z3) Minimal, (4z9) Significant, etc.

11 Marital Status Married, Single, Divorced, Widowed, Separated
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Intra-Relation:Building a Patient Network

Nodes

Patient Samples O
: Breast Cancer Patient Network

162,500 Breast Cancer

Patient Samples O O O
O O
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Intra-Relation:Building a Patient Network

Labels

Breast Cancer Patient Network

Clinical OQutcome _
Not Survived

1- Survived Survived
+1: Survive @ |

-1 : Not Survived To be predicted @ @
? : To be predicted @

@
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Intra-Relation:Building a Patient Network

Similarities between
Two Patient Samples

Edges

Breast Cancer Patient Network k-Nearest Neighbors
Similarities between are linked !

Two Patient Samples 0 /

Similarities from 16 Attributes of
Surveillance, Epidemiology, End Results
(SEER) cancer incidence database
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Motivation

Labeled |  Accumulating labeled data igsime -consuming, costly, and
Data requires confidentiality agreements.

Time Consuming Costly Confidentiality Issue

Breast cancer

survivability is Collecting patient data

: Consultation fee and requires
determined after 5 ) .
treatment cost, etc. confidentiality
years from the
agreement .

diagnosis.
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Motivation

Labeled | Accumulating labeled data igsime -consuming, costly, and
Data requires confidentiality agreements.

Unlabeled | Unlabeled data can be collected witimuch less
Data efforts .
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Motivation

The prediction accuracy of machine learning algorithms increases
when the amount oflabeled data increases .

—
v . -_—
- /
. /
. /
o
4%
=)
3 yd fw AR kA A R cm xom Ak e i m e oo m s
o : Xiaojin Zhu,etal, 0" OAAOO AAT AARAO AEACTI T OEO OOET C
2 V/ support vector machine,” University of Wisconsin
/ I n SVM

Number of labeled data

Given asmall number of labeled data, SSL outperforms others. And, it is also
true its performance increases when more labeled data are given.
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Motivation

Labeled Accumulating labeled data igime -consuming , costly, and
Data requires confidentiality agreements.

Unlabeled | Unlabeled data can be collected witimuch less
Data efforts .

Pseudo-Labeled | Generate Pseudo-Labels to Improve

Data | prediction Accuracy !
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Proposed Metho®iSLCetraining

Generate Pseudo-Labels for Unlabeled Patient Data !

SSL Co-training
Prediction with Generation of
Labeled/Unlabeled Pseudo-labeled
patient data patient data

SSL Ceraining
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Proposed Metho&SLCetraining

Schematic description
Iteration O Iteration 1 Iteration 2
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Proposed Metho&ISLCetraining

' 1 CI OEOEI 60 +AU &AAOOOAO
| SSL Cetraining |

Pseudo labeled samples | | Boosted Samples

Agreement on prediction among Disagreement on prediction
the Co-trainers (Models) results in boosted samples.
generates

pseudo labeled samples.
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Proposed Metho®iSLCetraining

L:labeled {x,y;} vy, € {—1,1}
U:unlabled {x,y,} y, € {0}

f1:SSL classifier built on data set of V;
f2:SSL classifier built on data set of V,

F;:set of value predicted from the f;
F,:set of value predicted from the f,

do
Trainig f; and f,
mqy = midpoint of F;
m, = midpoint of F,
1 { 1 if filxy) >my

You = —1 elsewhere

2 { 1 if f2(xy) >my

You = —1 eslewhere
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Proposed Metho®iSLCetraining

Labeling
Yi

1. 442,
XY (i = index set of U)

if y'. = y*, (Agreement)

Ue<UN\{(x,y)}
L<LU{(x;,y)}

else (disagreement between f; and f,)
(x;,y;) reamin as boosted samples
(unlabeled data points for the next iteration)
while (if decrease in number of boosted samples)
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ExperimentsResults

Changes during iterations of SSL Cetraining
. Prediction Accuracy (AUC)

085~ The performance is
incrementally improved
as the number of p——
> 0.80 - pseudo-labeled data .
= increases. .
s
g 0.75
o
© b
£
2 //
g 070} .
Q. /
g * SSL Co-training
= —— h
0.65 . FZ
o é é :
Iteration
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ExperimentsResults

450 Changes during iterations of SSL Cetraining
. The number of boosted samples

@ 200 |—
@
E- The number of boosted samples decrease
S (pseudo-labeled data increase) as iteration
S proceeds.
& 150 |-
[7)]
o
Q
(aa]
©
»~ 100 —
@
£
=
=
Z

50

0

=
w
s

Iteration
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Model ComparisoPredictive models

Artificial Neural Network (ANN)
Support Vector Machine (SVM)

Semi-Supervised Learning (SSL)

with Co-Training
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ExperimentsResults

Robustness on Model Parameter Variation

ANN

Hidden
node

O o W

o
aN

SVM

0.0001

0.001

Gamma 0.01
0.1

SSL

3

7
K 15
20
30

SSL Cedraining

3

7

K 15
20
30

1
0.48 0.06
0.52 0.07
0.52 0.09
0.57 0.09
0.54 0.09
0.2
0.79 0.01
0.79 0.01
0.75 0.01
0.67 0.02
0.45 0.04
0.0001
0.71 0.01
0.75 0.01
0.77 0.01
0.77 0.01
0.78 0.01
0.0001
0.77 0.038
0.78 0.02
0.79 0.01
0.79 0.01
0.80 0.01
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0.58 0.06
0.55 0.06
0.58 0.09
0.57 0.08
0.59 0.09

0.4
0.80 0.01
0.79 0.01
0.75 0.01
0.67 0.02
0.45 0.04

0.01
0.71 0.01
0.75 0.01
0.77 0.01
0.78 0.01
0.78 0.01

0.01
0.77 0.038
0.78 0.02
0.79 0.01
0.79 0.01
0.80 0.01

Random Seeding

5
0.57 0.06
0.59 0.04
0.60 0.05
0.58 0.07
0.57 0.06

C

0.6
0.80 0.01
0.79 0.01
0.75 0.01
0.67 0.02
0.44 0.04

Mu

1
0.74 0.02
0.77 0.01
0.77 0.01
0.77 0.01
0.76 0.01

Mu

1
0.75 0.03
0.75 0.02
0.74 0.02
0.73 0.02
0.74 0.02

7

0.55 0.07
0.56 0.06
0.58 0.05
0.55 0.06
0.57 0.05

0.8
0.80 0.01
0.79 0.02
0.75 0.01
0.67 0.02
0.44 0.02

100
0.72 0.01
0.75 0.01
0.74 0.02
0.74 0.01
0.73 0.01

100
0.72 0.02
0.72 0.02
0.72 0.02
0.72 0.02
0.72 0.02

10
0.57 0.06
0.58 0.07
0.60 0.07
0.60 0.05
0.61 0.09
1
0.80 0.01
0.79 0.02
0.74 0.01
0.66 0.02
0.46 0.03
1000
0.72 0.01
0.74 0.02
0.72 0.02
0.72 0.02
0.70 0.03
1000
0.71 0.02
0.71 0.08
0.71 0.02
0.71 0.02
0.71 0.02
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ExperimentsResults

Performance Comparison among the 4 models

ANN

AUC

SVM

551 Co-training
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