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INTRA-RELATION
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SSL

SSLexploits the knowledge of the input structure from unlabeled data and 
at the same time utilizes the label information provided by labeled data . 

Semi-Supervised Learning
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What is thelabel ?
Knowing the geometry affects the answer.

Geometry changes the notion of similarity .
Assumption: Data is distributed on some low dimensional manifold.

Unlabeled data is used to estimate the geometry .

Semi-Supervised Learning: Data Manifold
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Desired functions are smooth with respect to the underlying geometry
: Functions of interest do not vary much in high density regionsor clusters.

The ȰÐÒÏÂÁÂÉÌÉÓÔÉÃȱ version:
: Conditional distributions P(y|x ) should be smooth with respect to the 
marginal P(x).

[Example] In a two class problem P(y=1|x) and P(y=-1|x) do not vary 
much in clusters.

Semi-Supervised Learning: Smoothness

6

Smoothness Assumption
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(Krishnapuram )

W

Smoothness Assumption on Data Manifold (Belkin & Niyogi 2004)

Let                  .        Penalty at              :

Total penalty:

p(x) is unknown , so the above quantity is estimated
by the help of unlabeled data :

7

Semi-Supervised Learning: Smoothness
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H is the RKHS(Reproducing Kernel Hilbert Space) associated with kernel k (. , .)
||f|| H is the RKHSnorm of f.
Combinatorial laplacian can be used for smoothness term : 

ʇH or ʇI are the trade-off parameters, and C (y, f) is any loss function.

(Belkin et al 2004)
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Manifold Regularization

Semi-Supervised Learning: Problem Setting
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General SSL ObjectiveFunction

f(x)=<w, x> where   xTŶ [xT 1],   wTᴺ  ɍwT, b]
L is combinatorial laplacian: L = D-W
ʇand c are the trade-off parameters

(Belkin et al 2004)
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Semi-Supervised Learning: Problem Setting
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Family of SSL Algorithms: Graph-based Methods

There has been a whole spectrum of interesting ideas on how to learn from 
both labeled and unlabeled data.

- Most recent work in semi-supervised learning

- The algorithms start with agraph where the nodesare the labeled and unlabeled 

data points and (weighted) edgesreflect the similarity of nodes.

- Assumption:  Nodes connected by alarge -weight edge tend to have the same 

label , and labels can propagation throughout the graph . 

- The algorithms enjoys nice properties from spectral graph theory 

Graph-based Semi-Supervised Learning Methods
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Graph based algorithms for semi-supervised learning:

Graph mincuts (Blum and Chawla 2001)  

Harmonic approach (Zhu et al. 2003)

Consistency approach (Zhou and Bousquet 2003)

Many others

Basics:

Build the weighted graph

Solve an optimization problem

: Use objective function based on cluster assumption

Family of SSL Algorithms: Graph-based Methods
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Graph Mincut

Harmonic Approach

Consistency Approach
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Family of SSL Algorithms: Graph-based Methods
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Graph Mincut

Harmonic Approach

Consistency Approach

Graph mincut and harmonic approach  
preserve labels of the labeled data
Ȱ,ÁÂÅÌÓ ÁÒÅ ÐÒÅÓÅÒÖÅÄȱ

Consistency applies a penalty term for 
labeled data
Ȱ,ÁÂÅÌÓ ÍÁÙ ÃÈÁÎÇÅȱ

Family of SSL Algorithms: Graph-based Methods
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Graph Representation: Creating Graphs

Vector -type Data

A1 A2 é A10 y

x1 10 5 é 1000 1

x2 6 6 é 3500 -1

x3 7 7 é 400 1 

é é é é é é

x7 3 88 é 700 -1

1+

1+

1+

1-

1-

1-

1+

x1

x2

x6
x7

x5

x3

x4

GraphConversion

Edges are built based on distance (similarity)
between two data points
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Fully Connected Graphs

Sparse Graphs

kNN Graphs

ʀNN Graphs

tanh -weighted Graphs

exp-weighted Graphs

Vector -type Data

Graph Representation: Creating Graphs

Naturally Given GraphsGraph-type Data

Time SeriesSequential Data

Tree Type Data



Korea-Japan ML Workshop/ 2nd June 2016                                                                                   Hyunjung (Helen) Shin17

Nodes i, j are connected by an edge 

if i is in ÊȭÓk-nearest -neighborhood

The hyperparameter, k, controls the 

density of the graph . 

Adaptive scales : The neighborhood 

radius is different in low and high data 

density regions. 

k-NN Graph

k-nearest -neighbors of x2 ( k=3)
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1+

1+
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1-

1-

1+

x1

x2

x6
x7

x5

x3

x4

Graph Representation: Creating Graphs
Sparse Graphs
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Nodes i, j are connected by an edge,
if the distance d(i, j) Ѕ ʀ. 

The hyper-parameter, ʀ, controls 
neighborhood radius . 

ʀ..graph is discrete w.r.t the hyper-
parameter

ʀ-NN Graph

ʀ-nearest -neighbors of x2  (ʀ= 3)

1+

1+

1+

1-
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x1

x2

x6
x7

x5

x3

x4

ʀ

Graph Representation: Creating Graphs
Sparse Graphs
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The hyperbolic tangent function is a 
ȬÓÏÆÔ ÓÔÅÐȭ ÆÕÎÃÔÉÏÎ ÔÈÁÔ ÓÉÍÕÌÁÔÅÓ ʀNN
in that when  d(i, j) >> ɻ2 , w ijЂ 0; 

d(i, j)<<  ɻ2 , w ijЂ ρ.

The hyperparameters
ȡ ɻ1 controls the slope value
ȡ ɻ2 controls the cutoff value

The tanh-weighted graph is continuous 
w.r.t . hyperparameters. (amenable to 
learning with gradient methods )
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Continuous weighting scheme.
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Graph Representation: Creating Graphs
Sparse Graphs
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One can create sparse graphs, where each node connects to only a few nodes.

With sparse graphs, the edges can beunweighted or weighted .

[Advantage]
Computationally fast
Good empirical performance thanks to removal of spurious connections
between dissimilar nodes

[Disadvantage]
Weight learning
A change in weight hyperparameterswill likely change the neighborhood, 
making optimization awkward .

Graph Representation: Creating Graphs
Sparse Graphs
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Cancer Clinical Outcome Prediction
Breast Cancer Survivability

CASE 1

J. Kim  and H. Shin (2013), 
Breast Cancer Survivability Prediction using Labeled, Unlabeled, and Pseudo-Labeled Patient 
Data, Journal of the American Medical Informatics Association (JAMIA) , 20(4):613-618

K. Park, A. Ali, D. Kim, Y. An, M. Kim, and H. Shin (2013), 
Robust Predictive Model for Evaluating Breast Cancer Survivability,
Engineering Applications of Artificial Intelligence , 26(9):2194-2205

H.Shin and Y. Nam (2014), 
A Coupling Approach of a Predictor and a Descriptor for Breast Cancer Prognosis, 
BMC Medical Genomics, vol.7(1): S4, http:// www.biomedcentral.com/1755-8794/7/S1/S4

Vector -Type Data
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Prediction of  Breast Cancer Survivability

Å Ȱ3ÕÒÖÉÖÁÌȱ is defined as patient remaining alive for a specified 

period of time after the diagnosis of cancer

Å Cancer Prognosis helps in establishing a treatment planby 
predicting the outcome of a disease

Background
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Data

Surveillance,  Epidemiology,  End Results (SEER)  cancer incident data

162,500 Breast cancer patient records 

16 attributes 

1 class label (Survivability) 

:  +1 (not survive)

: - 1 (survived)
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Surveillance, Epidemiology, and End Result data (SEER, 1973-2003)
Å Number of data points: 162,500
Å Number of attributes: 17   (16 input variables / 1 target class variable)

Prognostic elements of breast cancer survivability (SEER )

Prognostic elements Description

1 Survivability Target binary variable defines class of survival of patient.

2 Age at Diagnosis Actual age of patient in years

3 Tumor Size 2ɀ5 cm; at 5 cm, the prognosis worsens

4
Number of Positive
Nodes Examined

When lymph nodes are involved in cancer, they are known as positive.

5
Number of Nodes 

Examined
Total nodes (positive/negative) examined

6 Number of Primaries Number of primary tumors (1ɀ6)

Data
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Prognostic elements of breast cancer survivability (SEER )

Prognostic elements Description

1 Race Ethnicity: White, Black, Chinese, etc.

2 Radiation None, Beam Radiation, Radioisotopes, Refused, Recommended, etc.

3 Primary Site
Presence of tumor at particular location in body. 

Topographical classification of cancer.

4 Histological Type Form and structure of tumor

5 Behavior Code Normal or aggressive tumor behavior is defined using codes.

6 Grade
Appearance of tumor and its similarity to more or less aggressive tu

mors

7 Site Specific Surgery
Information on surgery during first course of therapy, whether 

Cancer directed or not.

8 Stage Defined by size of cancer tumor and its spread

9 Clinical Extension of tumor Defines the spread of the tumor relative to the breast

10 Lymph Node Involvement None, (1ɀ3) Minimal, (4ɀ9) Significant, etc.

11 Marital Status Married, Single, Divorced, Widowed, Separated

Data
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Nodes

: Breast Cancer  Patient Network

162,500 Breast Cancer 
Patient Samples

Patient Samples

Intra-Relation:Building a Patient Network
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1+

1+

1+

1-

1-

?

?

To be predicted

Labels

Breast Cancer Patient Network
Clinical Outcome 

+1:  Survived
-1 :  Not Survived
? :  To be predicted

Survived
Not Survived

Intra-Relation:Building a Patient Network
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1+

1+

1+

1-

1-

?

?

Edges

Breast Cancer Patient Network
Similarities between 
Two Patient Samples

Similarities from 16 Attributes of  
Surveillance,  Epidemiology,  End Results 
(SEER) cancer incidence database 

Similarities between 
Two Patient Samples

k-Nearest Neighbors 
are linked !

Intra-Relation:Building a Patient Network
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Motivation

Accumulating labeled data is time -consuming , costly , and 
requires confidentiality agreements.

Labeled
Data

Time Consuming Costly Confidentiality Issue

Breast cancer 
survivability is 

determined after 5 
years from the 

diagnosis.

Consultation fee and 
treatment cost,  etc. 

Collecting patient data 
requires 

confidentiality
agreement .
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Unlabeled data can be collected with much less 
efforts .

Labeled
Data

Unlabeled
Data

Accumulating labeled data is time -consuming , costly , and 
requires confidentiality agreements.

Motivation
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The prediction accuracy of machine learning algorithms increases
when the amount of labeled data increases .

31

Given a small number of labeled data , SSL outperforms others. And, it is also 
true its performance increases when more labeled data are given.

Number of labeled data

P
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Xiaojin Zhu, et al., Ȱ"ÒÅÁÓÔ ÃÁÎÃÅÒ ÄÉÁÇÎÏÓÉÓ ÕÓÉÎÇ ÌÅÁÓÔ ÓÑÕÁÒÅ 
support vector machine," University of Wisconsin

SVM
SSL

Motivation
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Generate Pseudo-Labels to Improve 

Prediction Accuracy !

Unlabeled data can be collected with much less 
efforts .

Labeled
Data

Unlabeled
Data

Pseudo-Labeled
Data

Accumulating labeled data is time -consuming , costly , and 
requires confidentiality agreements.

Motivation
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Proposed Method: SSL Co-training

Generate Pseudo-Labels for Unlabeled Patient Data !

Prediction with 
Labeled/Unlabeled 

patient data

Generation of 
Pseudo-labeled

patient data

SSL Co-training

SSL Co-training
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Schematic description

Proposed Method: SSL Co-training
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!ÌÇÏÒÉÔÈÍȭÓ +ÅÙ &ÅÁÔÕÒÅÓ

Boosted Samples

SSL Co-training

Pseudo labeled samples

Agreement on prediction among 
the Co-trainers (Models) 

generates 
pseudo labeled samples .

Model1 
(F1)

+1

Model2 
(F2)

+1

Disagreement on prediction 
results in boosted samples .

Model1 
(F1)

-1

Model2 
(F2)

+1

Proposed Method: SSL Co-training
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Proposed Method: SSL Co-training
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Proposed Method: SSL Co-training
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Experiments: Results

The performance is 
incrementally improved 
as the number of 
pseudo-labeled data 
increases.

Changes during iterations of SSL Co-training
:  Prediction Accuracy (AUC)
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Changes during iterations of SSL Co-training
: The number of boosted samples

The number of boosted samples decrease 
(pseudo-labeled data increase) as iteration 
proceeds.

Experiments: Results
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Model Comparison: Predictive models

Artificial Neural Network (ANN)

Support Vector Machine (SVM)

Semi-Supervised Learning (SSL) 

with Co-Training
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Experiments: Results

ANN
Random Seeding

1 3 5 7 10

Hidden
node

3 0.48 0.06 0.58 0.06 0.57 0.06 0.55 0.07 0.57 0.06
6 0.52 0.07 0.55 0.06 0.59 0.04 0.56 0.06 0.58 0.07
9 0.52 0.09 0.58 0.09 0.60 0.05 0.58 0.05 0.60 0.07

12 0.57 0.09 0.57 0.08 0.58 0.07 0.55 0.06 0.60 0.05
15 0.54 0.09 0.59 0.09 0.57 0.06 0.57 0.05 0.61 0.09

SVM
C

0.2 0.4 0.6 0.8 1

Gamma

0.0001 0.79 0.01 0.80 0.01 0.80 0.01 0.80 0.01 0.80 0.01
0.001 0.79 0.01 0.79 0.01 0.79 0.01 0.79 0.02 0.79 0.02
0.01 0.75 0.01 0.75 0.01 0.75 0.01 0.75 0.01 0.74 0.01
0.1 0.67 0.02 0.67 0.02 0.67 0.02 0.67 0.02 0.66 0.02
1 0.45 0.04 0.45 0.04 0.44 0.04 0.44 0.02 0.46 0.03

SSL
Mu

0.0001 0.01 1 100 1000

K

3 0.71 0.01 0.71 0.01 0.74 0.02 0.72 0.01 0.72 0.01
7 0.75 0.01 0.75 0.01 0.77 0.01 0.75 0.01 0.74 0.02

15 0.77 0.01 0.77 0.01 0.77 0.01 0.74 0.02 0.72 0.02
20 0.77 0.01 0.78 0.01 0.77 0.01 0.74 0.01 0.72 0.02
30 0.78 0.01 0.78 0.01 0.76 0.01 0.73 0.01 0.70 0.03

SSL Co-training
Mu

0.0001 0.01 1 100 1000

K

3 0.77 0.03 0.77 0.03 0.75 0.03 0.72 0.02 0.71 0.02
7 0.78 0.02 0.78 0.02 0.75 0.02 0.72 0.02 0.71 0.03

15 0.79 0.01 0.79 0.01 0.74 0.02 0.72 0.02 0.71 0.02
20 0.79 0.01 0.79 0.01 0.73 0.02 0.72 0.02 0.71 0.02
30 0.80 0.01 0.80 0.01 0.74 0.02 0.72 0.02 0.71 0.02

Robustness on Model Parameter Variation
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Performance Comparison among the 4 models

AUC

Experiments: Results




